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ABSTRACT：Based on the code for seismic design of building in China, primary structures usually yield 

due to severe earthquake loading in practice, so non-linearization of primary structures plays an important 

role in the dynamic response analysis. In this article, random response of secondary systems mounted on 

nonlinear primary system under random excitation is studied by using equivalent linearization method, and 

a 10-storey shearing structures is selected as an example. Using mean square response of secondary system 

as the objective function the optimal position and corresponding optimal parameters are obtained, and 

some valuable conclusions are proposed.  
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INTRODUCTION  

Primary-secondary systems are usually composed of two parts: primary system and secondary system. 

The equipment, furniture, architectural elements, and other non-structural components attached to the 

floors and walls of buildings are called secondary system, and structures which they are mounted on are 

called primary systems. In the earthquake, although structures maintain serviceable, the failure of 

secondary systems would also bring severe consequence. Reconnaissance reports and surveys on the 

seismic performance of non-structural components during past earthquakes report that failure of secondary 

systems constitutes a major portion of economic losses. In critical facilities, the direct and indirect losses 

can be more than the cost of replacing the collapsed building or structures.  

Much research work has been done on the dynamic behaviour of secondary systems connected to a 

primary structure during the last three decades [1-6]. As a result of an effort from the engineering 

profession to ensure the survivability of critical installations, such as piping systems and control panels, in 

nuclear power plants, some simple progress has been generated. However, the simple methods, which have 

been developed for the design of these components, are approximate methods that just are suitable for 

particular situations. There are mainly three approaches as follows: floor response spectra, dynamic 

response analysis of combined systems or cascade systems, and approximate method based on perturbation 

technique. The composite characteristics of such systems don’t match with usual structures, and traditional 

methods used for the analysis of classically damped structural systems, are not applicable. Although 

analysis of such structural systems without considering interaction between the primary and the secondary 

structural systems, is easy and economical, this analysis gives incorrect responses of the secondary system 

when the secondary system is not very light as compared to the supporting primary system, and when the 

frequency of vibration of the secondary system matches with one of the dominant frequencies of the 

supporting structural system. In such situations, responses of the secondary system, calculated by 

considering the interaction between the primary-secondary system give more realistic responses of the 

secondary system. 

The earthquake is a complex and random process, which can not be described in determinate time 

history. In the study, random input is adopted as the excitation, and seismic response of primary secondary 

system is investigated by the theory of random. Based on the code for seismic design of building in China, 

primary structures usually yield due to severe earthquake loading in practice, so non-linearization of 

primary structures plays an important role in the dynamic response analysis. Most of the published papers 

are concerned with elastic primary–secondary structures and only in a relatively small amount of work 

inelastic structural behavior is included [7-9]. In this article, random response of secondary systems 

mounted on nonlinear primary system under random excitation is studied by using equivalent linearization 
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method, in which the mean square response is selected as objective function for optimization design of 

secondary systems.  

 

BASIC EQUATIONS 
The primary-secondary system in the research is made up of 

shearing structures and accessory secondary systems, as is described in 

the following figure. Optimal position, which usually means the 

minimum seismic response of secondary system, is studied on the basis 

of random theory, and primary structure is subjected to the random 

excitation of White Noise. In the paper, structures are considered to 

yield due to severe earthquake excitation and Bouc-Wen hysteretic 

model is adopted to describe the nonlinearity of primary system. In the 

last three decades, several methods are proposed in order to obtain the 

appropriate response value, and the monte-carlo method is considered as 

the exact solution, which requires a mount of calculation and is difficult 

for actual application. Besides, some approximate methods are also 

proposed, representative one of which is the generalized equivalent 

linearization method. Generalized equivalent linearization method is 

firstly introduced by Caughey in 1963, then is improved separately by 

Bobori, Kaul, Penzien and Y. K. Wen, and it can solve both the heavy 

and light nonlinearity problems.  

The Fig.1 is the schematic diagram of the model of primary-

secondary systems. 

 

 

Bouc-Wen Hysteretic Model 

A nonlinear model of restoring force and damping is introduced by Y. K. Wen, which describes the 

nonlinear restoring force in a smooth curve. In the model of restoring force, by assuming linear damping 

force, hysteretic restoring force can be expressed as follows: 

( , ) (1 )g x x cx kx kz                                                                   (1) 

where k  and c  denote the stiffness and damping coefficient of the structure, respectively;  is the ratio of 

the postyield to the preyield stiffness of the structure. 

Using Bouc-Wen model, the hysteretic component of the restoring force of the primary strucuture is 

(1 )kz , in which z  is governed by the nolinear differential equation: 
1n n

z Ax x z z x z 


                                                                 (2) 

where n , A ,  , and   are the parameters that control the shape of the hysteretic loop. Equation. (2) is 

capable of representing a wide class of hysteretic behavior. For simplification, a combination  of the 

paramter values is given by  1A n  , 0.05  , and 0.95   in the paper. 

 

Generalized equivalent linearization method 

Bouc-Wen model is simply defined as follows: 

z Ax r x z x z                                                                        (3) 

and we can rewrite it in another form: ( , , )h x x z z Ax r x z x z    . 

Based on equivalent linearization, nonlinear differential equation (3) can be replaced by following 

linear one:  

e ez c x k z                                                                               (4) 

 

According to the minimum of difference value between equations (3) and (4), ec  and ek  can be 

defined: 
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Figure.1 Schematic diagram of the 

model of primary-secondary 



where the values of ec  and ek  depend on the moment of x , x , z  and z . 

Due to the moment of  x , x , z  and z  is calculated on the basis of confirmation of ec  and ek , it is 

a iteration process for determining the value of ec  and ek . The iteration process can be described as 

follows: 

(i)   Assume the initial values of ec  and ek . 

(ii)  Computer the moment of x , x , z  and z  from the motion equation of system. 

(iii) Obtain the new equivalent values of ec  and ek  from equation (5) and (6). 

(iv) Computer the new moment corresponding to the new parameter values of ec  and ek . 

(v)  Perform the termination test for constringent solution. 

Repeat from step (ii) to step (v) until a convergent solution is obtained. 

 

Equivalent linear equations of motion and objective function 

Assuming secondary system is mounted on the a th floor of primary structure, and the equations of 

motion of  primary-secondary system can be written as 
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where (1 ) , 1, ,i i i i i i i i if c x k x k z i n      , 
1 0nf   ; 

s s s s sf c x k x  ; 
i ei i ei iz c x k z  ; im , ic  and ik denote the 

mass, stiffness and damping coefficient of the i th floor of primary structure; ix  denotes the inter-storey 

displacement; 
gx  is the horizontal ground acceleration, which is assumed as a white-noise random process 

with a constant spectral density of gS .  

The above equations of motion can be rewritten in the form of first order differential matrix equation 

of state vector. 
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. 

Add the expection of equation (8) multiplied by  
T

u from the right with its transpose, and the 

response covariance matrix associated with equivalent linear equation is obtained which satisfies the 

ordinary matrix differential equation: 

[ ( )] [ ( )][ ( )] [ ( )][ ( )] [ ( )]TS t F t S t S t F t P t                                            (9) 

where [ ( )] [{ ( )}{ ( )} ]TS t E u t u t  is the response covariance matrix of primary-secondary system; [ ( )]P t  can be 

obtained by the formula: [ ( )] { }{ } 2 ( )TP t V V I t  . While the random ground excitation is a stationary white-

noise process with  the intensity of 
gS , a simple expression can be written: 

[ ][ ] [ ][ ] { }{ } 2T T

gF S S F V V S                                           (10) 

The stationary covariance matrix is the solution of the above matrix algebra equation, which depends on 

the value of equivalent linear parameters eic  and eik . 

Based on euqation (5) and (6) in the above part of the paper, equivalent linear parameters of each 

floor of primary structure can be written as: 
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Bouc-Wenhere hysteretic behavior of each floor is assumed to be the same, so iA , i , and i  is 

assumed to be 1, 0.95 and 0.05 respectively in the paper.  

The iteration process can be described as follows: 

(i)   Assume the initial values of eic  and eik , 1 i n  . 

(ii)  Computer the covariance matrix [ ]S  from the equation (10). 

(iii) Obtain the new parameter values of eic  and eik  from the equations (11) and (12). 

(iv) Computer the new covariance matrix corresponding to the new parameter values of eic  and eik  from 

equation (10). 

(v)  Perform the termination test for constringent solution. 

Repeat from step (ii) to step (v) until a convergent solution is obtained. According to the iterative result, 

the mean square response of secondary system is selected as the optimizing objective function. 

 

NUMERICAL RESULTS AND DISCUSSIONS  

In the previous research, it has been known that the factors influencing seismic response of secondary 

system include not only the mass, stiffness, damping ratio, and position of secondary system, but also the 

dynamic characteristics of primary system. Furthermore, the intensity of excitation would also have 

obvious effect on seismic response of secondary system while primary structures yield due to severe 

earthquake. Therefore, several key factors influencing optimal position of secondary system are 

investigated in the paper such as the mass, stiffness, damping ratio of secondary system and parameters of 

hysteretic model of primary structure. The crossover rate is chosen as the optimizing objective function, 

based on which the optimal positions with regard to different combination of key factors are computed and 

studied, and consequently some valuable results are obtained.  

The structure model used in this analysis is a 10 multi-story building frames with a secondary system 

located on a certain floor. The idealized shearing structure with mass lumped on each floor is illustrated in 

Fig. 1. Floor masses, im , are 1000kg , the inter-story stiffnesses, ik , are 
62 10 N m , damping ratio of 



structure,  , is 0.05 . In the paper, the nonlinear model proposed by Y. K. Wen is introduced and 

described by using equivalent linearity method in accounting for the hysteretic restoring force 

characteristics.  

Intensity of earthquake, Frequency and mass ratio of secondary system 
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Fig.2. Effect of intensity of earthquake, frequency and mass ratio of secondary system on the optimal position   

Fig.2 illustrates the effect of some key dynamic characteristics of secondary system on the optimal 

position, which include the intensity of earthquake, frequency and mass ratio of secondary system, etc. 

Form the figure, it can be observed that variations of mass and frequency of secondary system have 

obvious effect on optimal position while the intensity of earthquake excitation has little effect. When the 

mass of secondary system is small, optimal position usually locates at the bottom. In the section of  low 

and medium order frequency, optimal position will shift form the bottom to the top with the increase of 

frequency of secondary system, and while the frequency of secondary system is close to primary system 

the optimal position usually locates at the floor corresponding to minimum location of mode. In the section 

of high order frequency, the effect of tuning is not obvious and optional position usually locates at the 

bottom.  

With the increase of secondary system’s mass the optimal position of secondary system shifts from 

the top to the bottom of primary system, and while secondary system’s mass is large enough the first floor 

is the optimal position. The intensity of earthquake excitation has little effect on the optimal position, 

especially for the case that secondary system’s mass is little or large enough. While secondary system’s 

mass is medium large, the effect of intensity of earthquake is more obvious especially for the section of 

medium frequency, which can be seen from the curve of the 0.1s pm m   in the Fig.2.  

Damping ratio of secondary system 
Fig.3 illustrates the effect of damping ratio of secondary system on optimal position. Seismic 

response of the mode corresponding to secondary system’s frequency would decrease due to the increased 

damping ratio, so the practical response is dominated by fundamental frequency. Therefore, it can be 

observed that with the increasing of damping ratio, optimal position shifts from the top to the bottom of 



primary system, and usually is not located in the bottom for the section of medium frequency of secondary 

system.  
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Fig.3. Effect of damping ratio of secondary system on the optimal position   

 
CONCLUSIONS 

This paper has calculated the optimal position of secondary system mounted on nonlinear primary 

structure by the method of equivalent linearity, and the mean square response is adopted as the optimizing 

objective function. Key factors influencing the optimal position of secondary system are investigated and 

some valuable conclusions are gained as follows:  

1: The frequency, mass and damping ratio have obvious effect on optimal position of secondary 

system, while the intensity of earthquake excitation has small effect on optimal position.  

2: While the mass of secondary system is small, optimal position usually locates at the bottom of 

primary system for the low frequency section of secondary system. With the increasing of secondary 

system’s frequency, optimal position shifts towards the top of primary system for medium frequency 

section, and then towards the bottom for high frequency section. Moreover, optimal position shifts towards 

the bottom of primary system with the increasing of secondary system’s mass. 

3: With the increasing of damping ratio, optimal position of secondary system shifts from the top to 

the bottom of primary system 
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