当前位置:首页 > 研究进展 > 论文发表 >

    最新程序下载:











 
人工边界-地基-基础-塔筒(近海风力发电结构)风致响应分析
作者: 于通顺,练继建,柳国环,董霄峰
 

 

下载次数:更多论文下载...
PDF格式(左键浏览,右键另存)
黏弹性人工边界-地基-基础-塔筒风致响应特性分析
第22卷5期《应用基础与工程科学学报》Vol.22 No.5
2014 年:10月

摘要:首先,建立三维粘弹性人工边界和固定边界的地基-基础-风力发电机塔筒相互作用的有限元模型。然后,编制程序模拟了以Davenport谱为目标谱的脉动风场,并对其加以验证。最后,通过实测数据与数值结果的比较,验证了本文所用数值模型的准确性,分析了不同边界条件下风机结构、地基的自振特性进而对风振反应进行时域计算和频域内的功率谱分析,并考察了不同边界条件下整个结构体系的响应情况。数值与理论分析结果表明:(1)澄清和解释了风振响应谱峰的物理意义;(2)对于顺风向的振动,筒型基础内外地基土的振动情况基本相同;对于竖向振动,相对于筒外土,由于上部结构的压载及筒型基础的“环箍效应”筒内土的振动很小;(3)两种边界条件下塔筒顶端的响应几乎完全一致;采用粘弹性人工边界的地基,地基的振动频率明显减小。此外,还给出了可供工程分析的相关建议。
关键词:粘弹性人工边界;风力发电;塔筒-基础-地基;风荷载;响应功率谱
中图分类号:P315.9;U442   文献标识码:A     文章编号:
作者简介柳国环,男,副教授,博士
通讯作者柳国环liu_guohuan@sina.com.
    
Abstract: Firstly, the coupling models of soil-foundation-wind turbine tower with visco-elastic artificial boundary and fixed boundary were established. Then Davenport spectrum which was verified was composited to simulate the fluctuating wind load. At last the accuracy of numerical model was verified by comparing with measured data, and the analysis of the natural vibration characteristics of wind turbine structure and soil with different boundaries was done. And wind-induced vibration response in time domain and power spectrum in frequency domain was analyzed. Different responses of the entire system between visco-elastic artificial boundary and fixed boundary were further studied. Analysis results show that: (1) the physical meaning of the spectral peaks of wind-induced response is clarified and explained; (2) the along-wind vibration of soil inside bucket is almost the same as the vibration of soil outside; the vertical vibration of soil inside of bucket is much smaller than the vibration outside because of the above ballast and cyclo-hoop effect; (3) the response at tower tip has no difference between the model using different boundaries, and the vibration frequency of the soil is much smaller in the model of visco-elastic artificial boundary than the model of fixed boundary. In addition, the recommendations for engineering application are proposed.
Key words: visco-elastic artificial boundary; wind turbine; soil-foundation-wind turbine tower; wind load; power spectrum density



图 近海风力发电结构体系有限元模型
引言
我国建设了大量的风电场,这些风机单机容量大都在1.5MW到3MW之间,有的甚至达到了5MW。这些大型风机结构在风荷载作用下会产生很大的振动,振动经过基础传递到地基,引起地基的振动,可能会导致地基的弱化,引发风机结构安全事故。了解和掌握极限荷载作用下整个风机结构体系特别是地基的振动特性,是分析地基弱化问题的关键。目前对风荷载作用下风机结构地基振动特性的研究[1]相对少见。动力荷载作用下结构与地基的动力响应有明显的非线性现象,现有的研究[2][3][4]都是针对动力荷载作用下结构的响应特点,而忽略了非线性地基的响应特性。因此进行极限风荷载作用下风机结构体系振动尤其是地基振动特性的分析很有必要。
基于以上分析,本文借鉴有关专家对基础、地基中振动的研究方法[5][6],以采用复合筒形基础[7]为基础的风机为例,分析了风荷载作用下风机结构与地基的振动特性。首先,建立了采用三维粘弹性人工边界和固定边界的地基-基础-风机塔筒模型,采用实体单元模拟地基,考虑了地基和基础之间的摩擦和接触效应。然后,运用Davenport法模拟了风机结构周围的脉动风速时程,并加以验证。最后,通过实测数据与数值结果的比较,验证了本文所用数值模型的准确性,分析了风机结构及地基的振动时程,从频域范围内研究了风机结构和地基中的振动特性,并考察了粘弹性人工边界和固定边界对整个结构体系的影响。
 
         

结语
本文通过对极限风荷载作用下大型风力发电体系的数值计算,从频域范围内进行了一系列分析,简要总结如下:
(1)指出了地基的自振特性:地基属于密频结构,相邻模态频率相差很小,达到10-4量级甚至更小。
(2)论述了风机塔筒在极限风荷载下的响应特点:塔筒的振动主要体现风机结构的一阶模态。
(3)论述了复合筒型基础在极限风荷载下的响应特点:基础的振动除了体现有风机结构的一阶模态,同时还体现有地基土的振动特征。
(4)明确了地基土在极限风荷载下水平向和竖向的响应特点:地基振动以0.3Hz以下低频振动为主,主要体现地基本身的振动特点。
(5)对比了不同边界条件下风机结构及地基的振动特点,指出:两种边界条件下,塔筒顶端的响应计算结果几乎完全一致;采用固定边界时,地基的自振频率高于采用粘弹性人工边界的地基。在进行风荷载作用下地基响应时,建议采用粘弹性人工边界的地基。

参考文献(References):
[1]   周健, 金炜枫, 金卫华, 等. 风力发电机地基的现场加速度测试和数值模拟[J]. 西北地震学报, 2011, 33(B08): 257-260.
      ZHOU Jian, JIN Wei-feng, JIN Wei-hua, et al. Site Acceleration Test and Digital Simulation on the Vibration of the Wind Turbine Ground[J]. Northwestern Seismological Journal,  
       2011, 33(B08): 257-260.
[2]   房营光. 非线性地基-结构系统的地震共振突变分析[J]. 岩石力学与工程学报, 2004, 23(9): 1509-1514.
       FANG Ying-guang. Seismic resonant catastrophe analysis of nonlinear foundation-structure systems [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(9): 1509-  
      1514.
[3]   Soneji B B, Jangid R S. Influence of soil-structure interaction on the response of seismically isolated cable-stayed bridge. Soil Dynamics and Earthquake Engineering, 2008,  
       28(4): 245–257.
[4]   Assareh M A, Asgarian B. Nonlinear behavior of single piles in jacket type offshore platforms using incremental dynamic analysis. American Journal of Applied Sciences, 2008,  
       5(12): 1793–1803.
[5]   黄菊花, 何成宏, 杨国泰, 刘卫东. 地基中振动波传播的有限元分析[J]. 振动与冲击, 1999,18(1):38-43.
    HUANG Juhua, HE Chenghong, YANG Guotai, LIU Weidong. Finite element analysis of vibration propagation in foundation soil [J]. Journal of Vibration and Shock, 1999,18(1):38-43.
[6]   范存新, 张毅, 薛松涛, 陈镕. 桩-土-结构相互作用对高层建筑风振舒适度的影响[J]. 振动与冲击, 2006,25(3):90-94.
       FAN Cunxin, ZHANG Yi, XUE Songtao, CHEN Rong. Effect of pile-soil-structure interaction on comfortable level of tall building to wind-induced vibration [J]. Journal of Vibration  
             and Shock, 2006,25(3):90-94.
[7]   LIAN Ji-jian, DING Hong-yan, ZHANG Pu-yang,et al. Design of large scale prestressing bucket foundation for offshore wind turbine. Transactions of Tianjin  
         University
,2012,18(2):79-84.
[8]    Bazeos N, Hatzigeorgiou G D, Hondros I D, et al. Static, seismic and stability analyses of a prototype wind turbine steel tower [J]. Engineering structures, 2002, 24(8): 1015-
      1025.
[9]    谷音, 刘晶波, 杜义欣. 三维一致粘弹性人工边界及等效粘弹性边界单元[J]. 工程力学,2007 ,24 (12) 31 - 37.
         GU Yin, LIU Jing-bo, DU Yi-xin. 3D consistent viscous-spring artificial boundary and viscous-spring boundary element [J]. Engineering Mechanics, 2007, 24 (12) 31 - 37.
[10]    范庆来, 栾茂田, 杨庆. 软基上沉入式大圆筒结构的水平承载力分析[J]. 岩土力学, 2004,25(2): 191-195.
        FAN Qing-lai, LUAN Mao-tian, YANG Qing. Numerical analysis of lateral load bearing capacity of large cylindrical structures on soft foundations[J]. Rock and Soil Mechanics, 2004,                
        25(2): 191-195.
[11]    隋杰, 孙树立, 李燕, 等. 脉动风荷载对公路防眩板结构抗风性能的影响[J]. 应用基础与工程科学学报, 2013, 21(5): 899-907.
      SUI Jie, SUN Su-li, LI Yan, et al. Wind resistance performance of anti-glare panel under fluctuating wind loads [J]. Journal of Basic Science and Engineering, 2013, 21(5): 899-907.
[12]    冯宏, 肖正直, 李正良, 等. 超高层建筑风荷载谱试验研究及数学模型[J]. 应用基础与工程科学学报, 2013, 21(3): 569-580.
         FENG Hong, XIAO Zheng-zhi, LI Zheng-liang, et al. Experimental study and mathematical model on wind load spectrum of rectangular super tall buildings[J]. Journal of Basic  
         Science and Engineering, 2013, 21(3): 569-580.
[13]    王吉民, 李琳. 脉动风的计算机模拟[J]. 浙江科技学院学报,2005 ,17 (1) 34 - 37.
          WANG Ji-min, LI Lin. Digital simulation of turbulent wind field [J]. Journal of Hangzhou Institute of Applied Engineering, 2005 ,17 (1) 34 - 37.
[14]    于通顺,等,循环荷载下复合筒型基础地基孔压变化及液化分析[J].岩土力学,2014,35(3):820-826.
          YU Tong-shun, WANG Hai-jun. Pore water pressure fluctuation and liquefaction analysis of subgrade for composite bucket foundation under cyclic loading [J]. Rock and Soil  
          Mechanics, 2014, 35(3):820-826 (in Chinese).
[15]    柳国环, 李宏男. 高压输电塔一线体系风致动力响应分析与优化控制[J].中国电机工程学报,2008,28(19):131-137.
         LIU Guo-huan, LI Hong-nan. Analysis and Optimization Control of Wind-induced Dynamic Response for High-voltage Transmission Tower-line System [J]. Proceedings of the  
         CSEE, 2008, 28(19):131-137.

更多论文下载...
welcome to www.liuguohuan.net
天津大学 建筑工程学院 ; 天津大学 前沿技术研究院; 国家重点实验室-水利工程仿真与安全